Code: EE3T1

II B.Tech - I Semester-Regular/Supplementary Examinations November 2018

NUMERICAL METHODS AND DIFFERENTIAL EQUATIONS
 (ELECTRICAL \& ELECTRONICS ENGINEERING)

Duration: 3 hours
Max. Marks: 70

PART - A

Answer all the questions. All questions carry equal marks

$$
11 \times 2=22 \mathrm{M}
$$

1.

a) Evaluate $\tan \left(\Delta \tan ^{-1} x\right)$ if $h=1$.
b) Compute $f(2)$ such that $f(0)=1, f(1)=3, f(3)=55$ using Lagrange's interpolation formula.
c) State Gauss forward formula for interpolation.
d) State Simpson's $\frac{1}{3}$ rule.
e) Using Trapezoidal rule evaluate $\int_{0} x^{3} d x$.
f) Using Picard's method find a solution up to $2^{\text {nd }}$ approximation of the equation $\frac{d y}{d x}=2 x-y$ and $y(0)=1$.
g) Find two approximations in the Euler method for solving

$$
y(1.1) \operatorname{from} \frac{d y}{d x}=x(1+y), y(1)=1 \text { with } h=0.1
$$

h) Form the partial differential equation by eliminating the arbitrary constants from the equation $\frac{x^{2}}{a^{2}}+\frac{y^{2}}{b^{2}}=z$ where a, b are arbitrary constants.
i) Find the solution of the partial differential equation $z=p x+q y+\sqrt{1+p^{2}+q^{2}}$
j) State the One dimensional heat equation.
k) Write the possible solutions of Laplace equation.

PART - B

Answer any THREE questions. All questions carry equal marks.

$$
3 \times 16=48 \mathrm{M}
$$

2. a) Estimate a real root of the equation $x^{3}-5 x+3=0$ by Newton Raphson method.
b) Compute $y(15)$ using Newton's backward difference formula, from the following data.

x	8	10	12	14	16	18
y	12	29	62	154	489	915

3. a) Evaluate $\int_{0}^{1} \frac{d x}{1+x^{2}}$ by using Simpson's $\frac{3}{8}$ rule.
(b) Find $y^{\prime}(0)$ from the following table.

x	0	1	2	3	4	5
y	4	8	15	7	6	2

4. a) Using Taylor's method, solve $\frac{d y}{d x}=x y+1$ with $y(0)=1$ at $x=0.1$

8 M
b) Using Runge- Kutta method of fourth order, solve

$$
\frac{d y}{d x}=2 x+y^{2} \text { with } y(0)=1 \text { at } x=0.1,0.2 .
$$

5. a) Solve ${ }^{2}(y-z) p+y^{2}(z-x) q=z^{2}(x-y)$ 8 M
b) Solve $z^{2}\left(p^{2}+q^{2}\right)=x^{2}+y^{2}$ 8 M
6. a) Solve the partial differential equation
$\frac{\partial u}{\partial x}=2 \frac{\partial u}{\partial t}+u, u(x, 0)=6 e^{-3 x}$ by the method of separation of variables.
b) A tightly stretched string of length l is fixed at the ends. It is initially in equilibrium and set vibrating by giving a velocity ${ }_{0} \sin ^{3}\left(\frac{\pi x}{l}\right)$ at each point. Find the displacement at any point.
