Code: EE3T1

II B.Tech - I Semester–Regular/Supplementary Examinations November 2018

NUMERICAL METHODS AND DIFFERENTIAL EQUATIONS (ELECTRICAL & ELECTRONICS ENGINEERING)

Duration: 3 hours

Max. Marks: 70

PART - A

Answer *all* the questions. All questions carry equal marks 11x 2 = 22 M

1.

- a) Evaluate $tan(\Delta tan^{-1}x)$ if h = 1.
- b) Compute f(2) such that f(0) = 1, f(1) = 3, f(3) = 55 using Lagrange's interpolation formula.
- c) State Gauss forward formula for interpolation.
- d) State Simpson's $\frac{1}{3}$ rule.
- **e**) Using Trapezoidal rule evaluate $\int x^3 dx$.
- f) Using Picard's method find a solution up to 2^{nd} approximation of the equation $\frac{dy}{dx} = 2x - y$ and y(0)=1.
- g) Find two approximations in the Euler method for solving y(1.1) from $\frac{dy}{dx} = x(1 + y), y(1) = 1$ with h = 0.1

- h) Form the partial differential equation by eliminating the arbitrary constants from the equation $\frac{x^2}{a^2} + \frac{y^2}{b^2} = z$ where a, b are arbitrary constants.
- i) Find the solution of the partial differential equation $z = px + qy + \sqrt{1 + p^{2} + q^{2}}$
- j) State the One dimensional heat equation.
- k) Write the possible solutions of Laplace equation.

PART - B

Answer any *THREE* questions. All questions carry equal marks. $3 \ge 16 = 48 \text{ M}$

- 2. a) Estimate a real root of the equation $x^3 5x + 3 = 0$ by Newton Raphson method. 8 M
 - b) Compute y(15) using Newton's backward difference formula, from the following data.

8 M

X	8	10	12	14	16	18
У	12	29	62	154	489	915

3. a) Evaluate
$$\int_{0}^{1} \frac{dx}{1+x^{2}}$$
 by using Simpson's $\frac{3}{8}$ rule. 8 M

(b) Find y'(0) from the following table.

X	0	1	2	3	4	5
У	4	8	15	7	6	2

4. a) Using Taylor's method, solve
$$\frac{dy}{dx} = xy + 1$$
 with $y(0) = 1$
at $x = 0.1$ 8 M

b) Using Runge- Kutta method of fourth order, solve $\frac{dy}{dx} = 2x + y^{2} \text{ with } y(0) = 1 \text{ at } x = 0.1, 0.2.$ 8 M

5. a) Solve
$$x^{2}(y-z)p + y^{2}(z-x)q = z^{2}(x-y)$$
 8 M

b) Solve
$$z^2(p^2 + q^2) = x^2 + y^2$$
 8 M

- 6. a) Solve the partial differential equation $\frac{\partial u}{\partial x} = 2 \frac{\partial u}{\partial t} + u, u(x,0) = 6e^{-3x}$ by the method of separation of variables. 8 M
 - b) A tightly stretched string of length l is fixed at the ends. It is initially in equilibrium and set vibrating by giving a velocity $v_0 \sin^3\left(\frac{\pi x}{l}\right)$ at each point. Find the displacement at any point. 8 M